Introduction to TCP/IP

Transmission Control Protocol (TCP)

When two computers wish to exchange information over a network, there are several components that must be in place before the data can actually be sent and received. Of course, the physical hardware must exist, which is typically either a network interface card (NIC) or a serial communications port for dial-up networking connections. Beyond this physical connection, however, computers also need to use a protocol which defines the parameters of the communication between them. In short, a protocol defines the "rules of the road" that each computer must follow so that all of the systems in the network can exchange data. One of the most popular protocols in use today is TCP/IP, which stands for Transmission Control Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet Protocol (IP). Unlike a single local network, where every system is directly connected to each other, an internet is a collection of networks, combined into a single, virtual network. The Internet Protocol provides the means by which any system on any network can communicate with another as easily as if they were on the same physical network. Each system, commonly referred to as a host, is assigned a unique 32-bit number which can be used to identify it over the network. Typically, this address is broken into four 8-bit numbers separated by periods. This is called dot-notation, and looks something like "192.43.19.64". Some parts of the address are used to identify the network that the system is connected to, and the remainder identifies the system itself. Without going into the minutia of the Internet addressing scheme, just be aware that there are three "classes" of addresses, referred to as "A", "B" and "C". The rule of thumb is that class "A" addresses are assigned to very large networks, class "B" addresses are assigned to medium sized networks, and class "C" addresses are assigned to smaller networks (networks with less than approximately 250 hosts).

When a system sends data over the network using the Internet Protocol, it is sent in discrete units called datagrams, also commonly referred to as packets. A datagram consists of a header followed by application-defined data. The header contains the addressing information which is used to deliver the datagram to it's destination, much like an envelope is used to address and contain postal mail. And like postal mail, there is no guarantee that a datagram will actually arrive at it's destination. In fact, datagrams may be lost, duplicated or delivered out of order during their travels over the network. Needless to say, this kind of unreliability can cause a lot of problems for software developers. What's really needed is a reliable, straight-forward way to exchange data without having to worry about lost packets or jumbled data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top of IP, TCP offers a reliable, full-duplex byte stream which may be read and written to in a fashion similar to reading and writing a file. The advantages to this are obvious: the application programmer doesn't need to write code to handle dropped or out-of-order datagrams, and instead can focus on the application itself. And because the data is presented as a stream of bytes, existing code can be easily adopted and modified to use TCP.

TCP is known as a connection-oriented protocol. In other words, before two programs can begin to exchange data they must establish a "connection" with each other. This is done with a three-way handshake in which both sides exchange packets and establish the initial packet sequence numbers (the sequence number is important because, as mentioned above, datagrams can arrive out of order; this number is used to ensure that data is received in the order that it was sent). When establishing a connection, one program must assume the role of the client, and the other the server. The client is responsible for initiating the connection, while the server's responsibility is to wait, listen and respond to incoming connections. Once the connection has been established, both sides may send and receive data until the connection is closed.

You might also like...

Comments

Contribute

Why not write for us? Or you could submit an event or a user group in your area. Alternatively just tell us what you think!

Our tools

We've got automatic conversion tools to convert C# to VB.NET, VB.NET to C#. Also you can compress javascript and compress css and generate sql connection strings.

“PHP is a minor evil perpetrated and created by incompetent amateurs, whereas Perl is a great and insidious evil perpetrated by skilled but perverted professionals.” - Jon Ribbens