Securing ASP Data Access Credentials Using the IIS Metabase

As an ASP programmer, I am always writing code that accesses databases. Many applications, such as Site Server, Commerce Server, SharePoint, and Content Management Server provide their own API that helps an ASP programmer tie into this data in a secure and efficient way. That’s nice if you have access to these remarkably expensive platforms, but what about the rest of us? Well, you could roll up your sleeves and just whip off a couple COM objects; however unless you are a crewmember of the starship Voyager, such miracles are unlikely.

Usually, what it comes down to is something more like this:

Set ADOConn = Server.CreateObject (“ADODB.Connection”)
ADOConn.Open "myDataSource", "sa", "ItsASecret"

We need less than a second glance to see why this is bad. Any hacker who manages to view the ASP code will now have full access to your database server as well.

You’ve probably whipped up something like this while developing a new database driven web application. If you’re anything like me, you don’t want to be bogged down in supporting code and procedures. You want to get connected and begin writing feature code, the stuff that actually does something. “First things first.” we tell ourselves; we’ll go back and secure the application after we get it working.

If you have a good memory, and if you are not seriously overworked, you might actually come back and do this. When you finally do return to secure your code, there are a couple of things that can typically be done to help secure passwords like this one. First, we don’t use the sa, or system administrator, account; that much is obvious. Secondly, we typically define database connections and the strings that support them in global.asa or an include file. But is this really enough?

Using an account other than sa is very important. After all, if a hacker were to acquire the connection name and password, you would want to limit the amount of access they would have to other databases that might be supporting other services on your site or even other customers. However, I say that this is insufficient. Your web application is going to want read and write access to the database in order to perform its duties. So, if a hacker has gotten this far, they’ve already got enough information to sabotage your site, place false orders, or download your entire user list.

Moving your connection strings to global.asa may seem like a good idea at first, but consider the fact that most hackers are very likely to look here first for critical application information. There are known loopholes that allow hackers access to global.asa, just as there are security issues that allow them to view your ASP code. Include files aren’t much better, since hackers can usually view these just as any other ASP file on your site.

Don’t think you’ve done enough to prevent this either. I am generally very thorough about security, but I was very alarmed one day when I received an anonymous e-mail from someone handing me a scrap of code from my site that contained the Administrator password for my entire domain! Fortunately for me, it was a password I had long since changed. (One wonders how my code functioned without it, though.) This just illustrates my point; even if you are diligent now, you probably weren’t always, and others on your server are probably not.

SQL databases are not the only thing that is susceptible to this kind of attack either. The administrator account I mentioned above was being used to access an LDAP directory. Many applications and frameworks that tie into ASP will require secured access. This is to prevent anonymous web users from accessing the API directly. But in so doing, they also expose us to the serious threat of compromising our security credentials. These can be SQL Server or other database accounts, LDAP directory accounts, or even privileged Windows user accounts. Literally, anything that needs this kind of protection can be at risk in this way.

So, what’s a responsible programmer to do? Robert Howard, author of Site Server 3.0 Personalization and Membership (available from Wrox Books) recommends storing this critical information in the registry. There’s only one problem. While Site Server and other high-end systems built on ASP often include a means of accessing the registry, Microsoft has, some would say thoughtfully, not included a standardized means of manipulating the registry from ASP. To his credit, Robert also briefly mentions the alternative we will illustrate today, even calling it preferable to using the registry. That alternative is to store our access codes in the IIS metabase.

Did I say preferable? Yes. In fact, the metabase is where IIS stores the usernames and passwords it uses to support itself and ASP. Unlike the registry, it not only includes a means of securing this content, but also a means for hiding passwords from casual observation. And—here’s the great news—it comes built into IIS from version four onward.

Enter The Metabase

To do what I am suggesting, you are going to need some handy tools. One of these is the Metabase Editor, or MetaEdit for short. This tool is generously provided by Microsoft, and comes included in the IIS Resource Kit. You can also download it from Microsoft at http://support.microsoft.com/support/kb/articles/Q232/0/68.ASP.

Do yourself a favor and read the knowledge base article if you haven’t before. As the name implies, MetaEdit functions much like our old friend RegEdit, and in much the same way you can do a considerable amount of damage with it. Back up your metabase from the IIS management console, preferably several times. Especially do this while you are writing code that manipulates the metabase itself, because you will want to be able to undo any potentially bad changes it makes.

Once you have downloaded and installed MetaEdit on your web server, open it and take a look around. You’ll see that the metabase has a tree structure, very similar to the registry, or even Active Directory. In fact, like Active Directory (or any LDAP database for that matter) the metabase has a schema. The schema defines all the data types that can be defined within the metabase, in which containers they are valid, and other vital information.

So, this is where we’ll begin. We need to define data types that will store the username, password, and connection string for our database. If we were connecting to LDAP or Active Directory, we’d also need to create data types for these connections. There are three paths in which your new data type will be defined. These are each listed under the /Schema/Properties path, and are Defaults, Names, and Types. If we take a look at the values under these paths, we can see that they almost impossible to understand, because much of the information is stored in binary. Fortunately, we can extend the schema via the ADSI, or Active Directory Services Interface, a COM object API that allows us to interact with the metabase, as well as other directory structures. Through ADSI, we can use VBScript or ASP to bind to the metabase and define our values.

Schema: Preparing The Metabase

We want to create three data types, which I have chosen to call ODBCDataSource, ODBCUserName, and ODBCPassword. The data stored in these values will be used to replace the text strings in that awful ADODB command at the beginning of this article. If we wanted to use DSN-less connections, we could extend this list further to include a server and database name as well. You can do the same kind of thing to add other types of connection information for WinNT, Active Directory, LDAP, or whatever you like.

What we don’t want to do its take forever to get this part done. After all, we’re not even at the useful bits yet. So, I’ve included a VBScript file called MetaSchema.vbs that you can use to extend the metabase schema, so that it includes our data types. Simply put the script on the desired server, open your command prompt, navigate to it, and then type its name to execute it. You’ll need to run it using an account with Administrator level access.

· MetaSchema.vbs

Our sample does four things. First it creates a class for our new data types. I chose to call this DataAccessMethods. Next, it creates the three data types we described. Then, it adds the data types to the class. Finally, it creates a class for the container that will hold each of our DataAccessMethods instances, called DataAccessStorage.

In this example, all the data types are strings with default settings for inheritance and security. Also, be aware that the error detection is very rudimentary. If the script detects an error, it will simply stop working. In many cases it will skip the remaining code without even reporting the error. As an advanced exercise you can add these features later. However, for the time being, this script should run fine as it is.

Now, here’s a little about what is going on in this script. If you’ve done programming using ADSI before, this code will seem very basic to you. You might have been exposed to this through Windows 2000 or Microsoft Site Server. Regardless of whether you are familiar with ADSI or not, this code should be reasonably self-explanatory, and you should be able to familiarize yourself with the syntax by comparing the path names you see in the code to the paths visible when using MetaEdit.

The first thing we do after defining some constants is bind to the IIS metabase schema.

' Bind to the Schema container object.

Set SchemaObj = GetObject ("IIS://" & MachineName & "/Schema")

We do this by using the machine name, in this case “localhost”, to create the metabase path. We pass this path to the GetObject function, which is part of the ADSI component model. We’ll use the schema object throughout the remainder of the script to perform various functions.

Next, we call CreateClass, passing the name of the new class, “DataAccessMethods”. CreateClass is a simple function, which attempts to create the new class and returns TRUE if it succeeds. The functional part of the code is:

Set NewClassObj = SchemaObj.Create ("Class", ClassName)

NewClassObj.SetInfo

If the class was created successfully, then the script will create the properties themselves, adding each one to the class only if it has also been successfully created. In each case, the script will call CreateProperty and AddToClass for each new property. It does this through a subroutine called CreateProperty_Plus_AddToClass, the purpose of which is basically to save typing and prevent potential spelling errors that would bomb the script.

The script also adds two predefined properties to the DataAccessMethods property. The first is KeyType, which the metabase uses to determine the class of a key within the metabase; generally speaking, all classes make use of this key. The second is AdminACL, which determines the security permissions that will be applied to a given instance of the class.

Finally, the script creates class DataAccessStorage, a class specially created to hold the key folder that contains each of our DataAccessMethod keys. The only properties of this class are KeyType and AdminACL, which will allow us to set the security permissions for the root container.

Here is the condensed code from CreateProperty.

Set NewPropertyObj = SchemaObj.Create ("Property", PropertyName)

If Trim(Syntax) = "" Then Syntax = "string" ' default is String

NewPropertyObj.Syntax = Syntax ' Set the syntax; must do pre-save

NewPropertyObj.SetInfo ' save to the metabase

NewPropertyObj.Inherit = True ' Set attributes by inheritance

NewPropertyObj.SetInfo ' save to the metabase

First, CreateProperty defines NewPropertyObj, the new property object, by calling the Create method of SchemaObj, which we defined earlier. At this point, nothing has changed in the metabase. Before we can save the new property, we must define its syntax. While there are many syntax types, string is sufficient for our purposes here, and so we use it as the default syntax. After setting the syntax, we then perform a SetInfo on the object. This stores the item in the metabase. Once the property has been saved, we can make changes to other settings, such as its inheritance. Don’t forget to use SetInfo again to save the changes you make at this point.

Now, let’s move on to the code in AddToClass.

Set NewClassObj = GetObject ("IIS://" & MachineName & "/Schema/" & ClassName) 'Get the class object

'Get the optional properties list

OptPropList = NewClassObj.OptionalProperties

cnt = UBound(OptProplist)

'Add the new property to the array

ReDim Preserve OptPropList(cnt+1)

OptPropList(cnt+1) = PropertyName

'Write the values to the metabase

NewClassObj.OptionalProperties = OptPropList

NewClassObj.SetInfo

As usual, we use GetObject to retrieve the class object we want to add our properties to. Next, we set OptPropList with the value of the class object’s OptionalProperties property.

All this talk of properties, property lists, and optional properties has probably got your tongue tied in knots. Just think of OptionalProperties as an array that contains the list of properties that are part of the class, which happens to be a property of another object altogether. “I love properties! I’ll have the properties, properties, properties, properties, invoked methods, and properties!” (I refuse to take credit for this odd naming convention; you can blame the nice folks at Microsoft for it, but it certainly gives us an interesting insight into why they call it a meta-base.)

Now that we’ve got that little confusion out of the way, we set cnt to the upper bound of the OptPropList array. We do this so that we can extend the array by one in the following code. ReDim Preserve adds an additional element to the array, leaving existing values intact. This gives us just enough room to add our new property name to the list. Once we’ve done that, we reassign OptPropList to the OptionalProperties property. (Here we go again!) And, finally, we use SetInfo to save the whole sordid mess to the metabase.

If that didn’t confuse you as much as it did me, you can take a look at RemoveFromClass, another function I included that didn’t get used here. There is also a wealth of information about ADSI and the IIS metabase on the Microsoft Developer’s Network web site. To learn more about extending the IIS Schema, visit the Microsoft web site at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/iisref/html/psdk/asp/adse3g1f.asp
Now, we’ve successfully prepared the IIS metabase to store the special data types that we will use to hold the connection string, user name, and password for our database. Next, we’ll write those values, first using MetaEdit, then using ASP.

Storing Values in the Metabase

Now let’s have some fun. Open MetaEdit. If you left it open while you ran MetaSchema.vbs, then close it and re-open it. Once you have the Metabase Editor console open, expand the Schema key, and then expand Classes. You should see a key folder named DataAccessMethods. (Mine appeared at the top of the list.) There’s nothing of interest in it for us at the moment, but it’s important to note (and verify) that it is there. Now, expand the /Schema/Properties/Names key. If you sort the list in the right hand pane by Id, you should see three items in the 13000 range that correspond to the three values we defined using the MetaSchema.VBS script. Each will start with “ODBC”. The actual ID values may very depending on your server configuration.

Once we’ve verified that our new property types exist, minimize the Schema key and expand the LM key. LM stands for local machine, by the way. Under this key you will see all kinds of keys for different kinds of services running under IIS on the server. We want to create a new key to use for credential storage. Create a new key by right clicking LM and selecting New | Key. I chose to name my key ASP101, but you can call it whatever you like, as long as you also change any code that references this path.

[image: image1.png]
Create a new string value in the ASP101 key folder. In the Id dropdown, choose KeyType, and type “DataAccessStorage” in the data field. This will help ADSI figure out what properties and objects are supported by these containers, including the AdminACL object, which will be essential, as we’ll see soon enough.

Next, we need to separate the credentials for this particular web application from any others that we might potentially need for other programs. To do this, create another key under ASP101. I will call mine TestCred. If you want, you can use a friendlier name like an IIS site name or DNS name. Remember to change your code in the upcoming samples to reflect whatever you decide. We’ll create a new key for each new set of credentials we require; at least one per web site, but possibly more if your site has multiple levels of access.

Now open the TestCred key. Add a new value by right clicking it and selecting New | String. A dialog box will open. In the Id field, use the dropdown to find the ODBCDataSource item and select it. Change the User Type option to ASP App; this will relax security a little so that your web application can read the data. Check the inherit checkbox, if it is not already selected. Finally, type your data source name into the Data field and click OK.

Perform the same operations for ODBCUserName and ODBCPassword. As an extra step, when you create your ODBCPassword property, check the box marked Secure. This will prevent people from casually browsing with MetaEdit to determine the database password. You will get a warning about this step, telling you that it cannot be undone; once a data property has been secured, it can not be unsecured using MetaEdit.

[image: image2.png]
We’re almost done now. Create another string value in the TestCred key and choose KeyType for the Id. Put “DataAccessMethods” in the data field and click OK. We don’t need to create the AdminACL keys for either ASP101 or TestCred, we’ll explain why when we talk about metabase security.

So, now we have values stored for the TestCred applications DSN, user name, and password. This is everything we need to access the database from ASP, and maybe even more than we needed to secure in this way. That’s fine for one application, but how can we automate the setting of these values, so that we can administer multiple sites easily? The answer is that we’d use the same ADSI functions to read and write to this part of the metabase as we’d use to access the schema.

If you want to write ASP scripts that set or change the values stored in the metabase, you will need to force the user to authenticate for those scripts. The user will need to log in to an account belonging to the server’s Administrators group. Otherwise your scripts will fail in a profound way. In fact, this is going to be a problem for our scripts when we read the settings, as we’ll explain in the next section.

Security and the Metabase

Before we can use ASP code to write to the database, or even read from it, we need to consider metabase security and how it will affect our attempts to access this data. By default, only server administrators can access the metabase information. Even MetaEdit doesn’t provide a means of changing the access control lists within the metabase. Microsoft hjjjjjjjjjjjprovides a sample showing how to change security ACLs using VBScript though, and you can download it here:

http://support.microsoft.com/support/kb/articles/Q267/9/04.ASP

However, the error checking within the script is not very good, and it has some bugs too. Because of this, I have included a revised version of the script, MetaACL.vbs that fixes some of its shortcomings and provides better error checking.

If you wanted you could grab parts of this code and append them to MetaSchema.vbs to create one script that will set your schema and also set security for you. Although a better idea, I think, would be to create a separate automated script for this purpose, because you will only need to configure the schema once, but you may reuse this security code to help you configure many, many instances of our DataAccessMethods class.

To change the permissions to suit our purposes, we need to grant Everyone the ability to Read entries, and Enumerate objects. In order to do this, we’ll have to remove the existing ACL for Everyone first. From the command line, go to the directory in which you have placed the revised MetaACL.vbs script, then type the following, hitting enter after each command:

METAACL “IIS://localhost/ASP101” Everyone –d
METAACL “IIS://localhost/ASP101” Everyone RE
METAACL “IIS://localhost/ASP101/CredTest” Everyone –d
METAACL “IIS://localhost/ASP101/CredTest” Everyone RE

This will remove Everyone from each part of the tree, and recreate it with the correct permissions. The second set of commands is important because, in this example, we have not set AdminACL to inherit settings from its parent.

True, these settings won’t make your keys hack-proof. But storing credentials here will help obfuscate your data, so that it won’t fall victim to some script-kiddy who just happens to have learned to exploit CodevVew.asp. In time, you can do more to secure the metabase even further, enhancing its ability to protect your data.

Also, you could easily make this part of an ASP based web administration script that could both create the necessary keys and properties, and also set their security for you. I think it’s a fine idea, but I only have so much time and space, after all. Also, It’s more important for you to understand what is going on in the metabase regarding creation of data and setting security. Trust me, this will help you later when you do begin writing code, and if you do that, then I’ve done my job here.

Reading Our Credentials from the MetaBase

Now that we’ve done all this preparatory work, we arrive at our anticlimactic ending. In fact you’re probably going to wonder how something so difficult to set up and configure could possibly be this easy to use. Let’s take a look at the code for MetaRead.asp:

· MetaRead.asp

There is a lot of code here, but what it does is very simple. First, we define the names for the machine, root key, and specific data access key that we want to use for this web application. I’ll use the same ones I defined when we created keys earlier. If you created different keys, remember to check your code here.

Const ComputerName = "localhost"

Const StorageKey = "ASP101"

Const DataAccessKey = "CredTest"

We turn on error trapping, because we know that the upcoming commands could easily fail, and we want to test for that.

On Error Resume Next

Then we use GetObject to open a connection to the metabase.

' Get the data access container

MetaBasePath = "IIS://" & ComputerName & "/" & StorageKey & "/" & DataAccessKey

Set ConfigKey = GetObject(MetaBasePath)

Once we have a connection to the container we want, we read the three properties for the data connection using the Get method.

' Read data access values

DataSource = ConfigKey.Get("ODBCDataSource")

UserName = ConfigKey.Get("ODBCUserName")

Password = ConfigKey.Get("ODBCPassword")

If this fails, we generate an error report and set the Boolean MetaSuccess to FALSE. Otherwise, we set MetaSuccess to TRUE. Once we’re past our trap, we turn errors back on.

If Err.number <> 0 Then

Response.Write "<P>ERROR Reading data access credentials from metabase
"

Response.Write Err.Number & ": " & Err.Description

MetaSuccess = FALSE

Else

MetaSuccess = TRUE

End If

On Error Goto 0

At this point we take a brief moment to indulge in a little optional code. The next section just displays the values we’ve read in HTML. Obviously, this serves no purpose but to help inflate our egos a bit after a hard day of wrestling the metabase beast, and it should be removed from any real applications for this code.

The last section of the code checks for success by testing MetaSuccess. If TRUE, it will create an ADODB Connection object, then call the Open method to connect itself to an ODBC data source.

If MetaSuccess Then

ADOConn = Server.CreateObject("ADODB.Connection")

ADOConn.Open DataSource, UserName, Password

End If

If you are still using my sample data in the metabase, these commands will probably error out, unless of course you’ve created a DSN called myDSN and set your system-admin password to “ItsASecret”. But why go to all that trouble? Put your own DSN data into the metabase and run the code again.

If you have trouble getting the code to access the metabase, check the spelling of your container names. If you don’t see any mistakes there and you are still having trouble, or if you are getting messages that say “Permission Denied”, then recheck the steps we discussed in the security section. You can use MetaACL.vbs to display the access rights for specific users or all the ACLs of a key. View the source code for details on how to use MetaACL.vbs.

Where to Go From Here

You’ve learned how to configure the metabase, set up security, add keys and data to it, and finally read that data into a web application. These abilities serve as a foundation that will allow you to accomplish a great deal using the metabase. Now that you’ve completed this project, there are still a lot of things you can do to take this code even further, and make it truly useful. With very little extra work, you can craft this lesson into a customized code library or component that will help you manage your usernames and passwords that might otherwise have been vulnerable. You could even build this up to the point where you have a tool that could be sold commercially. At the very least, you can use this code to retool the database driven ASP applications that you have now or might create someday.

Why not use code similar to MetaRead.asp in your global.asa file instead? You could put your metabase read function into an include file, and call it from global.asa using a single parameter to specify the key to read from. Of course, for performance reasons you shouldn’t actually create your ADO connections at the application level, however, you can put these commands in an include file and have them read the credentials from application level objects created in global.asa.

Let’s not forget that we could do a lot of work to automate the process of creating and populating the keys in the metabase. This goes for securing them as well. Why not build a web application to manage all of this? Just remember that you need to force the user to log in as someone for whom you’ve assigned write permissions to the DataAccessStorage key. Because you’d be creating new keys, you might want to be sure the user has administrator level access.

There is really a lot of uncharted territory here. Custom settings for inheritance and security can be configured on your metabase data to make administration easier on you. And, everything we’ve done today used only one of the many metabase data types. If you think it over for a while, you might be able to come up with a specialized use for this storage system that I haven’t considered. As you play with the metabase some more, you’ll find that it has other advantages as well, like replication for example.

So what are you waiting for? Get out there and make good use out of what you’ve learned.

_1060985612.bin

_1060985881.bin

