Avoiding Multiple Instances of an Application

Generalizing the solution for NT

Daniel Lohmann pointed out the fundamental defect of the above mechanism. Although it is reliable, it is not complete, in that it addresses only one of the three possible meanings of "unique instance".

  1. Avoiding multiple instances started in the same user session.
  2. Avoiding multiple instances started in the same desktop.
  3. Avoiding multiple instances started in any session of the same user account.
  4. Avoiding multiple instances started on the same machine.

In particular, he points out that my way of creating the Mutex name uses a system-global name, guaranteed to be unique for the application, but which is known to all users, sessions, and desktops. Note that this raises the same issue with respect to any use of global names for Mutexes, Semaphores, Events, and even shared memory-mapped files: the assumption that a single name is valid depends upon your interpretation of the above three points. Thus, if you are building a system that uses synchronization primitives and which requires a solution other than (d), you will have to apply the techniques below to the synchronization primitive naming as well. 

He points out that in the Terminal Server edition of NT (which is built into Windows 2000), the kernel no longer has a single "global" namespace, but in fact each Terminal Server session has a private namespace. System services share a common namespace for what is called the "console session". He points out that "this all results in consuming much more memory and making some programming tasks quite tricky, but the result is that every user logged into the Terminal Server is able to start its E-Mail client".

There's another little fix he made to my code:

The CreateMutex() call fails with ERROR_ACCESS_DENIED if the Mutex was created in another user's session. This comes from passing NULL for the SECURITY_ATTRIBUTES which results in default security settings. The typical default DACL allows only CREATOR/OWNER and SYSTEM access to the object.

His proposed solution is to extend the name of the Mutex beyond the GUID technique I use, to address the solutions of (a)-(c). He writes:

"I start with (b) because it is simpler. Using GetThreadDesktop() you get a handle to the desktop your thread is running on. Passing this to GetUserObjectInformation(), you get the name of the desktop, which is unique".

"Even (c) is quite easy. The solution is to add the current users account name. Using GetUserName() you get the current users account name. You should qualify it with the current users domain, which can be determined using GetEnvironmentVariable() with USERDOMAIN as variable name."

"For (a) it's a little bit more complicated. You have to open the process token using OpenProcessToken(). Pass this token to GetTokenInformation() to retrieve a TOKEN_STATISTICS structure. The AuthenticationId member of this structure, a 64-bit number (coded as an LUID), contains the unique id of the login session. Convert this into a string".

Based on his description, I created the following subroutine and header file. Note that for any given application, you must decide at compile time which exclusion option you want; for example, if you want to have the application unique to a desktop, choose the UNIQUE_TO_DESKTOP option to generate the key. If you have an application that chooses this dynamically, you can have one running in the system, thinking it is unique, and one running on the desktop, thinking it is unique. I built a little project to test this code, which you can download.

You might also like...

Comments

Contribute

Why not write for us? Or you could submit an event or a user group in your area. Alternatively just tell us what you think!

Our tools

We've got automatic conversion tools to convert C# to VB.NET, VB.NET to C#. Also you can compress javascript and compress css and generate sql connection strings.

“The greatest performance improvement of all is when a system goes from not-working to working.” - John Ousterhout